论文标题

改善了对Sidh变体的扭转点攻击

Improved torsion point attacks on SIDH variants

论文作者

de Quehen, Victoria, Kutas, Péter, Leonardi, Chris, Martindale, Chloe, Panny, Lorenz, Petit, Christophe, Stange, Katherine E.

论文摘要

SIDH是一种基于在超大椭圆曲线之间发现的均质质量的困难,是一种量子后钥匙交换算法。但是,SIDH和相关的密码系统还揭示了其他信息:将秘密的同学对曲线亚组的限制(扭转点信息)。 Petit(2017)是第一个证明扭转点信息可能会明显降低寻找秘密的伊斯基因的困难的人。特别是,Petit表明SIDH的“过度拉伸”参数可能会在多项式时间中损坏。但是,这并不影响文献中提出的任何密码系统的安全性。本文的贡献是双重的:首先,我们通过利用来自双重和Frobenius同等基因的其他信息来加强小巧的技术。这大大扩展了扭转点攻击的影响。特别是,我们的技术产生了经典的攻击,该攻击完全打破了Azarderakhsh等人的N-Party集团钥匙交换。对于6个或更多的政党,以及针对3个或更多政党的量子攻击,可以改善最著名的渐近复杂性。我们还为6个政党提供了岩浆实施的岩浆实施。我们提供适用攻击的全部参数。其次,我们构建了旨在针对我们的攻击而虚弱的sidh变体。这包括启动曲线的后门选择,以及基地质量素数的后门选择。我们强调的是,我们的结果不会降低或揭示NIST提交的任何弱点的安全性。

SIDH is a post-quantum key exchange algorithm based on the presumed difficulty of finding isogenies between supersingular elliptic curves. However, SIDH and related cryptosystems also reveal additional information: the restriction of a secret isogeny to a subgroup of the curve (torsion point information). Petit (2017) was the first to demonstrate that torsion point information could noticeably lower the difficulty of finding secret isogenies. In particular, Petit showed that "overstretched" parameterizations of SIDH could be broken in polynomial time. However, this did not impact the security of any cryptosystems proposed in the literature. The contribution of this paper is twofold: First, we strengthen the techniques of Petit by exploiting additional information coming from a dual and a Frobenius isogeny. This extends the impact of torsion point attacks considerably. In particular, our techniques yield a classical attack that completely breaks the n-party group key exchange of Azarderakhsh et al. for 6 parties or more, and a quantum attack for 3 parties or more that improves on the best known asymptotic complexity. We also provide a Magma implementation of our attack for 6 parties. We give the full range of parameters for which our attacks apply. Second, we construct SIDH variants designed to be weak against our attacks; this includes backdoor choices of starting curve, as well as backdoor choices of base-field prime. We stress that our results do not degrade the security of, or reveal any weakness in, the NIST submission SIKE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源