论文标题

簇状的电影天体物理数据可视化,并应用于月球形成陆地合成

Clustering-informed Cinematic Astrophysical Data Visualization with Application to the Moon-forming Terrestrial Synestia

论文作者

Aleo, Patrick D., Lock, Simon J., Cox, Donna J., Levy, Stuart A., Naiman, J. P., Christensen, A. J., Borkiewicz, Kalina, Patterson, Robert

论文摘要

目前,出于科学交流的目的,目前尚未对科学可视化工具进行优化,以创建数值数据的电影生产质量表示。在我们的管道\ texttt {estra}中,我们概述了一个从原始仿真到完成的渲染,作为一种在可视化领域教授非专家的方式,如何独自实现生产质量的输出。我们证明了使用视觉效果软件Houdini进行电影天体物理数据可视化的可行性,这是通过机器学习聚类算法告知的。为了证明这条管道的功能,我们使用了\ cite {lock18}的后影响后的,热平衡的月球形成合成。我们的方法旨在识别“物理上可解释的”簇,其中簇在适当的相空间中识别(例如,在这里我们使用温度 - 凝聚相位空间)对应于模拟数据中的物理有意义的结构。然后,可以将聚类结果通过在简化的Houdini软件阴影网络中告知颜色映射过程来突出显示这些结构,在该网络中,不同的相位空间簇被映射到不同的颜色值,以易于视觉识别。群集信息也可以通过Houdini的场景视图在3D位置空间中使用,以帮助物理聚类查找,模拟原型制作和数据探索。将我们基于聚类的渲染与由高级可视化实验室(AVL)团队创建的渲染进行了比较,以作为概念证明“ Imagine The Moon”。使用\ texttt {estra},科学家拥有一种创建自己的生产质量,数据驱动可视化的工具。

Scientific visualization tools are currently not optimized to create cinematic, production-quality representations of numerical data for the purpose of science communication. In our pipeline \texttt{Estra}, we outline a step-by-step process from a raw simulation into a finished render as a way to teach non-experts in the field of visualization how to achieve production-quality outputs on their own. We demonstrate feasibility of using the visual effects software Houdini for cinematic astrophysical data visualization, informed by machine learning clustering algorithms. To demonstrate the capabilities of this pipeline, we used a post-impact, thermally-equilibrated Moon-forming synestia from \cite{Lock18}. Our approach aims to identify "physically interpretable" clusters, where clusters identified in an appropriate phase space (e.g. here we use a temperature-entropy phase-space) correspond to physically meaningful structures within the simulation data. Clustering results can then be used to highlight these structures by informing the color-mapping process in a simplified Houdini software shading network, where dissimilar phase-space clusters are mapped to different color values for easier visual identification. Cluster information can also be used in 3D position space, via Houdini's Scene View, to aid in physical cluster finding, simulation prototyping, and data exploration. Our clustering-based renders are compared to those created by the Advanced Visualization Lab (AVL) team for the full dome show "Imagine the Moon" as proof of concept. With \texttt{Estra}, scientists have a tool to create their own production-quality, data-driven visualizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源