论文标题

机器学习基金分类

Machine Learning Fund Categorizations

论文作者

Mehta, Dhagash, Desai, Dhruv, Pradeep, Jithin

论文摘要

鉴于共同基金的普及(包括交易所交易基金(ETF))作为多元化的金融投资,来自各个投资管理公司的大量共同基金和多元化策略已经在市场上获得。在如此广泛的共同基金景观中确定类似的共同基金变得比以往任何时候都变得更加重要,因为从销售和营销到投资组合复制,投资组合多元化和税收损失收获等许多应用。当前的最佳方法是提供的数据供应商提供的分类,通常依靠人类专家的策划,借助可用数据。在这项工作中,我们确定一个行业广泛的备受赞誉的分类系统是可以使用机器学习并在很大程度上可重现的,进而构建了真正的数据驱动分类。我们讨论学习这种人造系统,我们的结果及其含义时面临的智力挑战。

Given the surge in popularity of mutual funds (including exchange-traded funds (ETFs)) as a diversified financial investment, a vast variety of mutual funds from various investment management firms and diversification strategies have become available in the market. Identifying similar mutual funds among such a wide landscape of mutual funds has become more important than ever because of many applications ranging from sales and marketing to portfolio replication, portfolio diversification and tax loss harvesting. The current best method is data-vendor provided categorization which usually relies on curation by human experts with the help of available data. In this work, we establish that an industry wide well-regarded categorization system is learnable using machine learning and largely reproducible, and in turn constructing a truly data-driven categorization. We discuss the intellectual challenges in learning this man-made system, our results and their implications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源