论文标题

3D二次Zakharov-Kuznetsov方程的孤立波的渐近稳定性

Asymptotic stability of solitary waves of the 3D quadratic Zakharov-Kuznetsov equation

论文作者

Farah, Luiz Gustavo, Holmer, Justin, Roudenko, Svetlana, Yang, Kai

论文摘要

我们考虑二次Zakharov-kuznetsov方程$$ \ partial_t u + \partial_xΔU + \ partial_x u^2 = 0 $ \ on $ \ mathbb {r}^3 $。单独的波解决方案由$ q(x-t,y,z)$给出,其中$ q $是$ -Q +ΔQ + q^2 = 0 $的基态解决方案。我们证明了这些孤立波解的渐近稳定性。 Specifically, we show that initial data close to $Q$ in the energy space, evolves to a solution that, as $t\to\infty$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $x> δt -\tan θ\sqrt{y^2+z^2} $ for $0 \leq θ\leq \fracπ{3}-Δ$。

We consider the quadratic Zakharov-Kuznetsov equation $$ \partial_t u + \partial_x Δu + \partial_x u^2 =0 $$ on $\mathbb{R}^3$. A solitary wave solution is given by $Q(x-t,y,z)$, where $Q$ is the ground state solution to $-Q + ΔQ + Q^2 =0$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $Q$ in the energy space, evolves to a solution that, as $t\to\infty$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $x> δt -\tan θ\sqrt{y^2+z^2} $ for $0 \leq θ\leq \fracπ{3}-δ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源