论文标题

注意力指导的判别区域定位和骨骼年龄评估的标签分布学习

Attention-Guided Discriminative Region Localization and Label Distribution Learning for Bone Age Assessment

论文作者

Chen, Chao, Chen, Zhihong, Jin, Xinyu, Li, Lanjuan, Speier, William, Arnold, Corey W.

论文摘要

骨骼年龄评估(BAA)在临床上很重要,因为它可用于诊断儿童发育过程中内分泌和代谢性疾病。现有的基于深度学习的方法用于分类骨骼年龄,将全局图像用作输入,或通过注释额外的边界框或关键点来利用本地信息。但是,全球形象的培训不足以判别性的本地信息,同时提供额外的注释是昂贵且主观的。在本文中,我们提出了一种注意引导方法,以自动将BAA的歧视区域定位,而无需任何额外的注释。具体而言,我们首先训练分类模型,以了解判别区域的注意力图,找到手部区域,最歧视区域(腕骨)和下一个最歧视的区域(Metacarpal骨骼)。在这些注意力图的指导下,我们从原始图像中裁剪了信息丰富的地方区域,并汇总了BAA的不同区域。我们没有将BAA作为一般回归任务,这是由于年龄标签空间中的标签歧义问题而是最佳的,而是建议使用关节年龄分布学习和期望回归,这可以利用不同个体年龄的手图像之间的序数关系,并导致更健壮的年龄估计。在RSNA小儿骨龄段数据集上进行了广泛的实验。使用培训注释,我们的方法与需要手动注释的现有最新的半自动深度学习方法相比,取得了竞争成果。代码可在https://github.com/chenchao666/bone-age-assessment上找到。

Bone age assessment (BAA) is clinically important as it can be used to diagnose endocrine and metabolic disorders during child development. Existing deep learning based methods for classifying bone age use the global image as input, or exploit local information by annotating extra bounding boxes or key points. However, training with the global image underutilizes discriminative local information, while providing extra annotations is expensive and subjective. In this paper, we propose an attention-guided approach to automatically localize the discriminative regions for BAA without any extra annotations. Specifically, we first train a classification model to learn the attention maps of the discriminative regions, finding the hand region, the most discriminative region (the carpal bones), and the next most discriminative region (the metacarpal bones). Guided by those attention maps, we then crop the informative local regions from the original image and aggregate different regions for BAA. Instead of taking BAA as a general regression task, which is suboptimal due to the label ambiguity problem in the age label space, we propose using joint age distribution learning and expectation regression, which makes use of the ordinal relationship among hand images with different individual ages and leads to more robust age estimation. Extensive experiments are conducted on the RSNA pediatric bone age data set. Using no training annotations, our method achieves competitive results compared with existing state-of-the-art semi-automatic deep learning-based methods that require manual annotation. Code is available at https: //github.com/chenchao666/Bone-Age-Assessment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源