论文标题

是什么限制了ENKF可以有效地吸收的观测值的数量?

What limits the number of observations that can be effectively assimilated by EnKF?

论文作者

Hotta, Daisuke, Ota, Yoichiro

论文摘要

合奏卡尔曼滤波器(ENKF)算法从观察结果中提取信息的能力,借助信号自由度(DFS)的概念。一个简单的数学参数表明,ENKF的DFS是从上方的集合大小界定的,这需要比集合大小自动导致DFS低估,这需要吸收更多的观察值。由于DFS是映射到归一化观察空间的后误差协方差的痕迹,因此被低估的DFS意味着分析扩散中的过度自信(不足),在循环环境中,这需要协方差膨胀。然后将该理论扩展到协方差定位方案(B-localization或R-Localization)以显示它们如何减轻DFS低估问题的情况。通过简单的一维协方差模型证明了来自数学参数的这些发现。最后,DFS概念用于形成有关如何解释先前在文献中报道的Letkf的几种令人困惑的特征,例如为什么使用较少的观察结果会导致更​​好的性能,当最佳的本地化量表倾向于出现,以及为什么基于与先前信息的放松方法尤其成功地分配了基于先前信息方法的协方差通货膨胀方法,为什么尤其是在观察过程中分发了尤其是成功的。附录中介绍了DFS诊断的首次应用于准全局ENKF系统。

The ability of ensemble Kalman filter (EnKF) algorithms to extract information from observations is analyzed with the aid of the concept of the degrees of freedom for signal (DFS). A simple mathematical argument shows that DFS for EnKF is bounded from above by the ensemble size, which entails that assimilating much more observations than the ensemble size automatically leads to DFS underestimation. Since DFS is a trace of the posterior error covariance mapped onto the normalized observation space, underestimated DFS implies overconfidence (underdispersion) in the analysis spread, which, in a cycled context, requires covariance inflation to be applied. The theory is then extended to cases where covariance localization schemes (either B-localization or R-localization) are applied to show how they alleviate the DFS underestimation issue. These findings from mathematical argument are demonstrated with a simple one-dimensional covariance model. Finally, the DFS concept is used to form speculative arguments about how to interpret several puzzling features of LETKF previously reported in the literature such as why using less observations can lead to better performance, when optimal localization scales tend to occur, and why covariance inflation methods based on relaxation to prior information approach are particularly successful when observations are inhomogeneously distributed. A presumably first application of DFS diagnostics to a quasi-operational global EnKF system is presented in Appendix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源