论文标题
关于外平面图的恒星色索引的猜想的注释
A note on a conjecture of star chromatic index for outerplanar graphs
论文作者
论文摘要
图$ g $的星缘着色是$ g $的适当边缘着色,没有双重路径或长度为四个。 IT星色素索引,$χ_{st}^{'}(g),$ g $的$是$ g $的最低数字$ k $,其星缘颜色为$ k $ colors。在\ cite {lb}中, L. Bezegov $ \急性{a} $等。推测$χ_{st}^{'}(g)\ leq \ lfloor \ frac {3δ} {2} {2} {2} \ rfloor+1 $ $ g $是带有外在的图形, 最高度$δ\ geq 3. $在本文中,我们获得了$χ_{st}^{'}(g)\leqΔ+6 $当$ g $是直径为2或3的2个连接的外平面图,如果$ g $是$ g $。
A star edge coloring of a graph $G$ is a proper edge coloring of $G$ without bichromatic paths or cycles of length four. The it star chromatic index, $χ_{st}^{'} (G ),$ of $G$ is the minimum number $k$ for which $G$ has a star edge coloring by $k$ colors. In \cite{LB}, L. Bezegov$\acute{a}$ et al. conjectured that $χ_{st}^{'} (G )\leq \lfloor\frac{3Δ}{2}\rfloor+1$ when $G$ is an outerplanar graph with maximum degree $Δ\geq 3.$ In this paper we obtained that $χ_{st}^{'}(G) \leq Δ+6$ when $G$ is an 2-connected outerplanar graph with diameter 2 or 3. If $G$ is an 2-connected outerplanar graph with maximum degree 5, then $χ_{st}^{'}(G) \leq 9.$