论文标题

3D激光映射相对精度自动评估算法

3D Lidar Mapping Relative Accuracy Automatic Evaluation Algorithm

论文作者

Chen, Guibin, Deng, Jiong, Huang, Dongze, Zhang, Shuo

论文摘要

基于3D激光雷尔的HD(高清晰度)地图在自动驾驶汽车定位,计划,决策,感知等中起着至关重要的作用。许多与SLAM相关的3D激光雷达映射技术(同时定位和映射)用于HD MAP构造中,以确保其高准确性。为了评估3D激光雷达映射的准确性,最常见的方法使用姿势的地面真理来计算估计的姿势和地面真相之间的误差,但是在自动驾驶汽车的实际LIDAR映射中,通常很难在地面上获得姿势的地面真相。在本文中,我们提出了一种相对准确的评估算法,该算法可以自动评估没有地面真相的3D激光雷达映射构建的高清图的准确性。一种用于定量检测点云映射中幽灵程度的方法旨在间接反映准确性,它利用了直线行进的光原理,而光无法穿透不透明的物体。我们的实验结果证实,所提出的评估算法可以自动有效地检测出其精度小于设定阈值(例如0.1M)的不良姿势,然后计算出所有估计姿势的不良姿势P_BAD百分比,以获得最终的准确度P_ACC = 1 -P_BAD。

HD (High Definition) map based on 3D lidar plays a vital role in autonomous vehicle localization, planning, decision-making, perception, etc. Many 3D lidar mapping technologies related to SLAM (Simultaneous Localization and Mapping) are used in HD map construction to ensure its high accuracy. To evaluate the accuracy of 3D lidar mapping, the most common methods use ground truth of poses to calculate the error between estimated poses and ground truth, however it's usually so difficult to get the ground truth of poses in the actual lidar mapping for autonomous vehicle. In this paper, we proposed a relative accuracy evaluation algorithm that can automatically evaluate the accuracy of HD map built by 3D lidar mapping without ground truth. A method for detecting the degree of ghosting in point cloud map quantitatively is designed to reflect the accuracy indirectly, which takes advantage of the principle of light traveling in a straight line and the fact that light can not penetrate opaque objects. Our experimental results confirm that the proposed evaluation algorithm can automatically and efficiently detect the bad poses whose accuracy are less than the set threshold such as 0.1m, then calculate the bad poses percentage P_bad in all estimated poses to obtain the final accuracy metric P_acc = 1 - P_bad.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源