论文标题
对于$ p $ -P $ -KIRCHHOFF类型的问题的存在和Hölder规律性,涉及奇异的非线性,没有Ambrosetti-Rabinowitz(AR)条件
Existence and Hölder regularity of infinitely many solutions to a $p$-Kirchhoff type problem involving a singular nonlinearity without the Ambrosetti-Rabinowitz (AR) condition
论文作者
论文摘要
我们对具有奇异性和具有均匀dirichlet边界条件的超线性非线性的分数$ -P $ -KIRCHHOFF类型问题进行了无限多种解决方案的研究。此外,解决方案将被证明是有限的,并且还证明了薄弱的比较原则。还讨论了a {\ it` $ c^1 $ vers $ w_0^{s,p} $'}分析。
We carry out an investigation of the existence of infinitely many solutions to a fractional $p$-Kirchhoff type problem with a singularity and a superlinear nonlinearity with a homogeneous Dirichlet boundary condition. Further the solution(s) will be proved to be bounded and a weak comparison principle has also been proved. A {\it `$C^1$ versus $W_0^{s,p}$'} analysis has also been discussed.