论文标题
Salerno模型中的Kuznetsov-MA类似呼吸器的解决方案
Kuznetsov-Ma breather-like solutions in the Salerno model
论文作者
论文摘要
Salerno模型是著名的非线性schrödinger(NLS)方程的离散变体,通过适当调谐相关的同拷贝参数,通过适当地调谐了离散NLS(DNLS)方程与完全可以集成的Ablowitz-Ladik(AL)模型。尽管AL模型具有称为Kuznetsov-Ma(KM)呼吸的显式时间周期性溶液,但尚未研究远离整合极限的时间周期溶液的存在。因此,这项工作的目的是阐明Salerno模型的时间周期解决方案的存在和稳定性。特别是,我们通过使用伪符号持续算法来改变模型的同拷贝参数,其中通过固定点迭代确定了时间周期性解决方案。我们表明,解决方案转变为具有小但未衰落的远场振荡的时间周期性模式。值得注意的是,我们的数值结果支持以前未知的时间周期解的存在{\ it}在可集成的情况下,其稳定性通过使用floquet理论探讨了稳定性。还讨论了这些模式对DNLS限制的延续。
The Salerno model is a discrete variant of the celebrated nonlinear Schrödinger (NLS) equation interpolating between the discrete NLS (DNLS) equation and completely integrable Ablowitz-Ladik (AL) model by appropriately tuning the relevant homotopy parameter. Although the AL model possesses an explicit time-periodic solution known as the Kuznetsov-Ma (KM) breather, the existence of time-periodic solutions away from the integrable limit has not been studied as of yet. It is thus the purpose of this work to shed light on the existence and stability of time-periodic solutions of the Salerno model. In particular, we vary the homotopy parameter of the model by employing a pseudo-arclength continuation algorithm where time-periodic solutions are identified via fixed-point iterations. We show that the solutions transform into time-periodic patterns featuring small, yet non-decaying far-field oscillations. Remarkably, our numerical results support the existence of previously unknown time-periodic solutions {\it even} at the integrable case whose stability is explored by using Floquet theory. A continuation of these patterns towards the DNLS limit is also discussed.