论文标题

在Wigner方程式中添加反折叠性

Adding decoherence to the Wigner equation

论文作者

Barletti, Luigi, Frosali, Giovanni, Giovannini, Elisa

论文摘要

从Adami,Hauray和Negulescu提出的单碰撞解压缩机制的详细描述开始,我们得出了一个具有相当通用形式的脱碳项的Wigner方程。该方程式显示包含众所周知的破坏模型,例如Wigner-Fokker-Planck方程,作为特定情况。通过得出相应的平衡定律集,说明了解相机制对宏观力矩(密度,电流,能量)动力学的影响。我们模型的大型渐近学问题在特定的(尽管物理上相关)是高斯解决方案的特定问题。结果表明,添加caldeira-legget摩擦项提供了一个人在物理考虑的基础上期望的渐近行为。

Starting from the detailed description of the single-collision decoherence mechanism proposed by Adami, Hauray and Negulescu, we derive a Wigner equation endowed with a decoherence term of a fairly general form. This equation is shown to contain well known decoherence models, such as the Wigner-Fokker-Planck equation, as particular cases. The effect of the decoherence mechanism on the dynamics of the macroscopic moments (density, current, energy) is illustrated by deriving the corresponding set of balance laws. The issue of large-time asymptotics of our model is addressed in the particular, although physically relevant, case of gaussian solutions. It is shown that the addition of a Caldeira-Legget friction term provides the asymptotic behaviour that one expects on the basis of physical considerations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源