论文标题

从Jaynes-Cummings模型到非亚洲仪表理论:Quantum工程师的导游

From the Jaynes-Cummings model to non-Abelian gauge theories: a guided tour for the quantum engineer

论文作者

Kasper, Valentin, Juzeliunas, Gediminas, Lewenstein, Maciej, Jendrzejewski, Fred, Zohar, Erez

论文摘要

量子的设计许多必须实现大量约束的身体系统似乎是量子模拟领域内的巨大挑战。晶格量规理论是具有大量局部约束的特殊重要类别的量子系统,在高能量物理,凝结物质和量子信息中起着核心作用。尽管最近的实验进步表明,大规模量子模拟了阿贝尔仪表理论的可行性,但非亚伯仪理论的量子模拟似乎仍然难以捉摸。在本文中,我们介绍了最少的非亚洲晶格量规理论,通过其中,我们在著名的亚伯利亚仪表理论(例如Jaynes-Cumming模型)中介绍​​了必要的形式主义。特别是,我们表明,某些最小的非亚伯晶格规定理论可以映射到三到四个级别的系统,量子模拟器的设计是当前技术的标准配置。此外,我们为一个维度SU(2)晶格量规理论的希尔伯特空间维度提供了上限,并认为使用当前数字量子计算机的实现似乎是可行的。

The design of quantum many body systems, which have to fulfill an extensive number of constraints, appears as a formidable challenge within the field of quantum simulation. Lattice gauge theories are a particular important class of quantum systems with an extensive number of local constraints and play a central role in high energy physics, condensed matter and quantum information. Whereas recent experimental progress points towards the feasibility of large-scale quantum simulation of Abelian gauge theories, the quantum simulation of non-Abelian gauge theories appears still elusive. In this paper we present minimal non-Abelian lattice gauge theories, whereby we introduce the necessary formalism in well-known Abelian gauge theories, such as the Jaynes-Cumming model. In particular, we show that certain minimal non-Abelian lattice gauge theories can be mapped to three or four level systems, for which the design of a quantum simulator is standard with current technologies. Further we give an upper bound for the Hilbert space dimension of a one dimensional SU(2) lattice gauge theory, and argue that the implementation with current digital quantum computer appears feasible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源