论文标题
富含度量的类别的注射率和较小
Approximate injectivity and smallness in metric-enriched categories
论文作者
论文摘要
研究了富含度量空间类别的类别的特性,并将其应用于该类别已知的结构和Banach空间类别的研究。对于满足轻度小度条件的每类形态,我们证明相应的近似注射率类都是反射性的,我们研究了反射形态的特性。作为应用程序,我们提供了Gurarii空间基本独特性的新的分类证明。
Properties of categories enriched over the category of metric spaces are investigated and applied to a study of constructions known from that category and the category of Banach spaces. For every class of morphisms satisfying a mild smallness condition we prove the corresponding approximate-injectivity class is weakly reflective, and we study the properties of the reflection morphisms. As an application we present a new categorical proof of the essential uniqueness of the Gurarii space.