论文标题

添加剂集的Schur程度

The Schur degree of additive sets

论文作者

Eliahou, Shalom, Revuelta, Pastora

论文摘要

让(G, +)成为一个Abelian群体。如果g的子集不包含X,y,z的子集,则x +y = z。我们通过引入g的Schur度量来扩展此概念,其中Schur度量1对应于Sumfree。经典的不平等s(n)$ \ le $ r n(3)-2,在Schur编号S(n)和Ramsey Number r n(3)= r(3,。3,3,3)之间,在更广泛的环境中保持有效,涉及G.递归上限的某些子集的Schur程度。我们制定了一个猜想,如果为,则可以填补这一空白。的确,我们对Schur学位的研究使我们猜想了所有n $ \ ge $ 2的$ \ le $ n(s(n -1) + 1)$ 2。 s(6)$ \ le $ 966猜想,而到目前为止,一切都为536 $ \ le $ s(6)$ \ le $ 1836。

Let (G, +) be an abelian group. A subset of G is sumfree if it contains no elements x, y, z such that x +y = z. We extend this concept by introducing the Schur degree of a subset of G, where Schur degree 1 corresponds to sumfree. The classical inequality S(n) $\le$ R n (3) -- 2, between the Schur number S(n) and the Ramsey number R n (3) = R(3,. .. , 3), is shown to remain valid in a wider context, involving the Schur degree of certain subsets of G. Recursive upper bounds are known for R n (3) but not for S(n) so far. We formulate a conjecture which, if true, would fill this gap. Indeed, our study of the Schur degree leads us to conjecture S(n) $\le$ n(S(n -- 1) + 1) for all n $\ge$ 2. If true, it would yield substantially better upper bounds on the Schur numbers, e.g. S(6) $\le$ 966 conjecturally, whereas all is known so far is 536 $\le$ S(6) $\le$ 1836.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源