论文标题
横向无限制的雷利 - 贝纳德湍流中的流动组织
Flow organization in laterally unconfined Rayleigh-Bénard turbulence
论文作者
论文摘要
我们调查了湍流的雷利 - 巴纳德对流的大规模循环(LSC),其中大包宽度比$γ= 32 $ $ ra = 10^9 $,并且以固定的prandtl数字$ pr = 1 $。有条件的平均技术使我们能够提取LSC的统计数据,即使结构的数量和方向在整个域上有所不同。我们发现此处获得的LSC的各种特性,例如壁剪应力分布,边界层厚度和风雷诺数,与限制域中的结果没有显着差异($γ\ 1 $)。鉴于结构的大小(通过单个对流辊的宽度衡量)在最高$ ra $时的大小超过两倍,这一点很值得注意。向关键剪切雷诺的推断$ re_s^{\ textrm {crit}} \大约420 $,在该$中,边界层(BL)通常会变得湍流,预计在$ ra _ {\ textrm {critm {critm {critm {critm {critm {critm {critm {critm {critm {critm {critm {critm {critm {15} \ of the Ultimate cormime {\ oin of the Ultimate cormime of the Ultimate Senigime;无限制的几何形状。该结果与Göttingen实验观测一致。此外,我们确认,靠近壁的局部热传输在羽状撞击区域最高,其中热BL最薄,在羽状区域中最低,其中热BL最厚。然而,这种趋势随着$ ra $的增加而减弱。
We investigate the large-scale circulation (LSC) of turbulent Rayleigh-Bénard convection in a large box of aspect ratio $Γ=32$ for Rayleigh numbers up to $Ra=10^9$ and at a fixed Prandtl number $Pr=1$. A conditional averaging technique allows us to extract statistics of the LSC even though the number and the orientation of the structures vary throughout the domain. We find that various properties of the LSC obtained here, such as the wall-shear stress distribution, the boundary layer thicknesses and the wind Reynolds number, do not differ significantly from results in confined domains ($Γ\approx 1$). This is remarkable given that the size of the structures (as measured by the width of a single convection roll) more than doubles at the highest $Ra$ as the confinement is removed. An extrapolation towards the critical shear Reynolds number of $Re_s^{\textrm{crit}} \approx 420$, at which the boundary layer (BL) typically becomes turbulent, predicts that the transition to the ultimate regime is expected at $Ra_{\textrm{crit}} \approx \mathcal{O}(10^{15})$ in unconfined geometries. This result is in line with the Göttingen experimental observations. Furthermore, we confirm that the local heat transport close to the wall is highest in the plume impacting region, where the thermal BL is thinnest, and lowest in the plume emitting region, where the thermal BL is thickest. This trend, however, weakens with increasing $Ra$.