论文标题

$ q $ - 系的一致性涉及Baxter模型的Baxter解决方案的统计力学分区功能

$q$-Series congruences involving statistical mechanics partition functions in regime III and IV of Baxter's solution of the hard-hexagon model

论文作者

Merca, Mircea

论文摘要

对于$ r_s(n)$的生成函数,对于每个$ s \ in \ {2,4 \} $,$ n $的分区数量为奇数零件,或一致于$ 0 $,$ \ pm s \ pm s \ pmod {10} $,在Rodney Baxter soldsitions of Hard-Hexagon Modelics的Rodney Baxter soluctime III中自然出现。 For each $s\in\{1,3\}$, the generating function of $R^*_s(n)$, the number of partitions of $n$ into parts not congruent to $0$, $\pm s\pmod {10}$ and $10-2s \pmod {20}$, arises naturally in regime IV of Rodney Baxter's solution of the hard-hexagon model of statistical力学。在本文中,我们调查了$ r_s(n)$和$ r^*_ s(n)$的均等,提供了新的奇偶校验结果,其中涉及分区编号$ p(n)$的总和和算术进度的正方形。

For each $s\in\{2,4\}$, the generating function of $R_s(n)$, the number of partitions of $n$ into odd parts or congruent to $0$, $\pm s\pmod {10}$, arises naturally in regime III of Rodney Baxter's solution of the hard-hexagon model of statistical mechanics. For each $s\in\{1,3\}$, the generating function of $R^*_s(n)$, the number of partitions of $n$ into parts not congruent to $0$, $\pm s\pmod {10}$ and $10-2s \pmod {20}$, arises naturally in regime IV of Rodney Baxter's solution of the hard-hexagon model of statistical mechanics. In this paper, we investigate the parity of $R_s(n)$ and $R^*_s(n)$, providing new parity results involving sums of partition numbers $p(n)$ and squares in arithmetic progressions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源