论文标题
噪声稳健性和实验证明,用于连续分布的量子生成对抗网络
Noise robustness and experimental demonstration of a quantum generative adversarial network for continuous distributions
论文作者
论文摘要
量子计算机中机器学习的潜在优势是文献中强烈讨论的话题。理论,数值和实验性探索很可能需要理解其力量。提出了不同的算法来利用变异量子电路的概率性质进行生成建模。在本文中,我们采用了量子生成对抗网络(QGAN)的混合体系结构,并在存在噪声的情况下研究其稳健性。我们设计了一种简单的方法,将不同类型的噪声添加到量子发生器电路中,并在数值上模拟嘈杂的混合量子生成对抗网络(HQGANS)以学习连续的概率分布,并表明HQGAN的性能仍然不受影响。我们还研究了不同参数对训练时间的效果,以减少算法的计算缩放,并简化其在量子计算机上的部署。然后,我们对Rigetti的Aspen-4-2Q-A量子处理单元进行培训,并介绍培训的结果。我们的结果为在嘈杂的中间量表量子设备上对不同量子机学习算法的实验探索铺平了道路。
The potential advantage of machine learning in quantum computers is a topic of intense discussion in the literature. Theoretical, numerical and experimental explorations will most likely be required to understand its power. There has been different algorithms proposed to exploit the probabilistic nature of variational quantum circuits for generative modelling. In this paper, we employ a hybrid architecture for quantum generative adversarial networks (QGANs) and study their robustness in the presence of noise. We devise a simple way of adding different types of noise to the quantum generator circuit, and numerically simulate the noisy hybrid quantum generative adversarial networks (HQGANs) to learn continuous probability distributions, and show that the performance of HQGANs remain unaffected. We also investigate the effect of different parameters on the training time to reduce the computational scaling of the algorithm and simplify its deployment on a quantum computer. We then perform the training on Rigetti's Aspen-4-2Q-A quantum processing unit, and present the results from the training. Our results pave the way for experimental exploration of different quantum machine learning algorithms on noisy intermediate scale quantum devices.