论文标题

运动学分析和拉格朗日库普曼操作员分析的混合方案,用于短期降水预测

Hybrid Scheme of Kinematic Analysis and Lagrangian Koopman Operator Analysis for Short-term Precipitation Forecasting

论文作者

Zheng, Shitao, Miyamoto, Takashi, Iwanami, Koyuru, Shimizu, Shingo, Kato, Ryohei

论文摘要

随着气象大数据的积累,用于短期降水预测的数据驱动模型已显示出越来越多的希望。我们专注于Koopman操作员分析,这是一个数据驱动的方案,可在观察到的数据中发现管理法律。我们提出了一种将该方案应用于伴随对流电流(例如降水)现象的方法。所提出的方法分解了速度场下对流电流之间现象的时间演变,而拉格朗日坐标下的物理量变化。对流电流通过运动学分析估算,并且物理量的变化通过Koopman操作员分析估算。提出的方法应用于实际的降水分布数据,结果表明,相对于常规方法,可以正确捕获降水的发展和衰减,并且可以在长期内进行稳定的预测。

With the accumulation of meteorological big data, data-driven models for short-term precipitation forecasting have shown increasing promise. We focus on Koopman operator analysis, which is a data-driven scheme to discover governing laws in observed data. We propose a method to apply this scheme to phenomena accompanying advection currents such as precipitation. The proposed method decomposes time evolutions of the phenomena between advection currents under a velocity field and changes in physical quantities under Lagrangian coordinates. The advection currents are estimated by kinematic analysis, and the changes in physical quantities are estimated by Koopman operator analysis. The proposed method is applied to actual precipitation distribution data, and the results show that the development and decay of precipitation are properly captured relative to conventional methods and that stable predictions over long periods are possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源