论文标题

干涉物:对齐钢筋学习剂的光学干涉仪

Interferobot: aligning an optical interferometer by a reinforcement learning agent

论文作者

Sorokin, Dmitry, Ulanov, Alexander, Sazhina, Ekaterina, Lvovsky, Alexander

论文摘要

获取培训数据的局限性限制了深入增强学习(RL)方法对现实世界机器人培训的潜在应用。在这里,我们训练RL代理以对齐马赫·泽尔德干涉仪,这是许多光学实验的重要组成部分,基于单眼摄像机获得的干扰条纹图像。该代理在模拟环境中进行训练,没有任何手工编码的功能或有关物理学的先验信息,然后转移到物理干涉仪中。由于一组域随机化模拟了物理测量中的不确定性,该代理在没有任何微调的情况下成功地对准了该干涉仪,从而达到了人类专家的绩效水平。

Limitations in acquiring training data restrict potential applications of deep reinforcement learning (RL) methods to the training of real-world robots. Here we train an RL agent to align a Mach-Zehnder interferometer, which is an essential part of many optical experiments, based on images of interference fringes acquired by a monocular camera. The agent is trained in a simulated environment, without any hand-coded features or a priori information about the physics, and subsequently transferred to a physical interferometer. Thanks to a set of domain randomizations simulating uncertainties in physical measurements, the agent successfully aligns this interferometer without any fine tuning, achieving a performance level of a human expert.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源