论文标题

学习扫描:在CT成像中进行个性化扫描的深入强化学习方法

Learning to Scan: A Deep Reinforcement Learning Approach for Personalized Scanning in CT Imaging

论文作者

Shen, Ziju, Wang, Yufei, Wu, Dufan, Yang, Xu, Dong, Bin

论文摘要

计算机断层扫描(CT)对受试者进行X射线测量,以重建层析成像图像。由于X射线是放射性的,因此希望控制X射线剂量的总剂量,以解决安全问题。因此,我们只能选择有限数量的测量角度,并分配每个剂量的有限剂量。传统方法(例如压缩传感)通常会随机选择角度,并在其上平均分配允许的剂量。在大多数CT重建模型中,强调是设计有效的图像表示,而较少强调的是改善扫描策略。一般而言,随机角度选择和相等剂量分布的简单扫描策略表现良好,但它们可能不是每个受试者的理想选择。为每个主题设计一个个性化的扫描策略以获得更好的重建结果是更可取的。在本文中,我们建议使用增强学习(RL)学习个性化的扫描政策,以选择每个主题的每个选择角度的角度和剂量。我们首先将CT扫描过程提出为MDP,然后使用现代的深RL方法来解决它。学识渊博的个性化扫描策略不仅可以带来更好的重建结果,而且还显示出强烈的概括,可以与不同的重建算法结合使用。

Computed Tomography (CT) takes X-ray measurements on the subjects to reconstruct tomographic images. As X-ray is radioactive, it is desirable to control the total amount of dose of X-ray for safety concerns. Therefore, we can only select a limited number of measurement angles and assign each of them limited amount of dose. Traditional methods such as compressed sensing usually randomly select the angles and equally distribute the allowed dose on them. In most CT reconstruction models, the emphasize is on designing effective image representations, while much less emphasize is on improving the scanning strategy. The simple scanning strategy of random angle selection and equal dose distribution performs well in general, but they may not be ideal for each individual subject. It is more desirable to design a personalized scanning strategy for each subject to obtain better reconstruction result. In this paper, we propose to use Reinforcement Learning (RL) to learn a personalized scanning policy to select the angles and the dose at each chosen angle for each individual subject. We first formulate the CT scanning process as an MDP, and then use modern deep RL methods to solve it. The learned personalized scanning strategy not only leads to better reconstruction results, but also shows strong generalization to be combined with different reconstruction algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源