论文标题

通过递延校正,与不均匀边界条件的反应扩散方程的任意高阶稳定方法

Arbitrary high-order unconditionally stable methods for reaction-diffusion equations with inhomogeneous boundary condition via Deferred Correction

论文作者

Koyaguerebo-Imé, Saint-Cyr E. R., Bourgault, Yves

论文摘要

在本文中,我们分析了与反应扩散方程相关的初始边界价值问题(IBVP)的全部离散化。为了避免可能的降低降低,首先将IBVP转变为具有均匀边界条件(IBVPHBC)的IBVP,通过提升不均匀的Dirichlet,Neumann或混合Dirichlet-Neumann-Neumann边界条件。 IBVPHBC通过递延校正方法及时离散,用于隐式中点规则,并导致阶段的订单$ 2p+2 $准确度的时间稳定方案$ p = 0,1,2,\ cdots $的校正。每个半散制方案都会产生一个非线性椭圆方程,使用Schaefer固定点定理证明了溶液的存在。与校正的阶段$ p $相对应的椭圆方程是由Galerkin有限元方法离散化的,并给出了IBVPHBC的完全离散化。这种完全离散的方案无条件地稳定,订单$ 2p+2 $的准确性及时。空间中的准确性顺序等于所考虑的网格家族时所使用的有限元素的程度,而一个顺序的增量被证明是准均匀的网格家族。进行了具有强刚度比和线性反应扩散方程来减少顺序的双轴反应扩散方程的数值测试,并证明了该方法的无条件收敛性。达到了2,4,6,8和10的订单准确性。

In this paper we analyse full discretizations of an initial boundary value problem (IBVP) related to reaction-diffusion equations. To avoid possible order reduction, the IBVP is first transformed into an IBVP with homogeneous boundary conditions (IBVPHBC) via a lifting of inhomogeneous Dirichlet, Neumann or mixed Dirichlet-Neumann boundary conditions. The IBVPHBC is discretized in time via the deferred correction method for the implicit midpoint rule and leads to a time-stepping scheme of order $2p+2$ of accuracy at the stage $p=0,1,2,\cdots $ of the correction. Each semi-discretized scheme results in a nonlinear elliptic equation for which the existence of a solution is proven using the Schaefer fixed point theorem. The elliptic equation corresponding to the stage $p$ of the correction is discretized by the Galerkin finite element method and gives a full discretization of the IBVPHBC. This fully discretized scheme is unconditionally stable with order $2p+2$ of accuracy in time. The order of accuracy in space is equal to the degree of the finite element used when the family of meshes considered is shape-regular while an increment of one order is proven for quasi-uniform family of meshes. Numerical tests with a bistable reaction-diffusion equation having a strong stiffness ratio and a linear reaction-diffusion equation addressing order reduction are performed and demonstrate the unconditional convergence of the method. The orders 2,4,6,8 and 10 of accuracy in time are achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源