论文标题

基于社会感应的边缘计算系统中的隐私感知任务分配

Towards Privacy-aware Task Allocation in Social Sensing based Edge Computing Systems

论文作者

Zhang, Daniel, Ma, Yue, Hu, X. Sharon, Wang, Dong

论文摘要

随着移动计算,物联网和无处不在的无线连接的进步,基于社交传感的边缘计算(SSEC)已成为一种新的计算范式,人们及其个人拥有的设备从物理世界中收集传感器测量并在网络的边缘进行处理。本文着重于隐私感知的任务分配问题,目标是在尊重用户自定义的隐私设置的同时优化SSEC系统中的计算任务分配。它介绍了一个新颖的游戏理论隐私感知任务分配(G-PATA)框架,以实现目标。 G-PATA包括(i)自下而上的游戏理论模型,可在满足最终用户的隐私设置的同时,在最终设备上产生最大收益; (ii)一种自上而下的激励计划,以调整任务的奖励,以确保由End设备做出的任务分配决策符合应用程序的服务质量(QOS)要求。此外,该框架结合了有效的负载平衡和减少迭代组件,以适应终端设备的状态和隐私配置的动态变化。 G-PATA框架是在由异构端设备(Jetson TX1和TK1板以及Raspberry PI3)组成的真实世界边缘计算平台上实现的。我们通过两个现实世界的社交传感应用将G-PATA与最新的任务分配方案进行比较。结果表明,G-PATA在各种隐私设置下的现有方法显着优于现有方法(我们的计划在应用程序的延迟减少方面的提高了47%,与Baselines相比,最终设备的收益要多15%。)。

With the advance in mobile computing, Internet of Things, and ubiquitous wireless connectivity, social sensing based edge computing (SSEC) has emerged as a new computation paradigm where people and their personally owned devices collect sensor measurements from the physical world and process them at the edge of the network. This paper focuses on a privacy-aware task allocation problem where the goal is to optimize the computation task allocation in SSEC systems while respecting the users' customized privacy settings. It introduces a novel Game-theoretic Privacy-aware Task Allocation (G-PATA) framework to achieve the goal. G-PATA includes (i) a bottom-up game-theoretic model to generate the maximum payoffs at end devices while satisfying the end user's privacy settings; (ii) a top-down incentive scheme to adjust the rewards for the tasks to ensure that the task allocation decisions made by end devices meet the Quality of Service (QoS) requirements of the applications. Furthermore, the framework incorporates an efficient load balancing and iteration reduction component to adapt to the dynamic changes in status and privacy configurations of end devices. The G-PATA framework was implemented on a real-world edge computing platform that consists of heterogeneous end devices (Jetson TX1 and TK1 boards, and Raspberry Pi3). We compare G-PATA with state-of-the-art task allocation schemes through two real-world social sensing applications. The results show that G-PATA significantly outperforms existing approaches under various privacy settings (our scheme achieved as much as 47% improvements in delay reduction for the application and 15% more payoffs for end devices compared to the baselines.).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源