论文标题

非线性动力学系统基于LSTM的异常检测

LSTM-based Anomaly Detection for Non-linear Dynamical System

论文作者

Tan, Yue, Hu, Chunjing, Zhang, Kuan, Zheng, Kan, Davis, Ethan A., Park, Jae Sung

论文摘要

非线性动力学系统的异常检测在确保系统稳定性方面起着重要作用。但是,它通常很复杂,必须通过大规模模拟来解决,这需要广泛的计算资源。在本文中,我们提出了基于长短期记忆(LSTM)的非线性动力学系统中新型的异常检测方案,以捕获时间顺序的复杂时间变化并做出多步骤预测。具体而言,我们首先介绍非线性动力学系统中基于LSTM的异常检测的框架,包括数据预处理,多步骤预测和异常检测。根据预测要求,在多步骤预测中探索了两种类型的训练模式,其中墙壁剪切应力数据集中的样品是通过自适应滑动窗口收集的。根据多步预测结果,提出了具有自适应参数(LAAP)算法的局部平均值来提取时间顺序的局部数值特征并估算即将发生的异常。实验结果表明,我们提出的多步预测方法比壁剪应力数据集中的传统方法可以实现更高的预测准确性,而LAAP算法在异常检测任务中的性能优于基于绝对值的方法。

Anomaly detection for non-linear dynamical system plays an important role in ensuring the system stability. However, it is usually complex and has to be solved by large-scale simulation which requires extensive computing resources. In this paper, we propose a novel anomaly detection scheme in non-linear dynamical system based on Long Short-Term Memory (LSTM) to capture complex temporal changes of the time sequence and make multi-step predictions. Specifically, we first present the framework of LSTM-based anomaly detection in non-linear dynamical system, including data preprocessing, multi-step prediction and anomaly detection. According to the prediction requirement, two types of training modes are explored in multi-step prediction, where samples in a wall shear stress dataset are collected by an adaptive sliding window. On the basis of the multi-step prediction result, a Local Average with Adaptive Parameters (LAAP) algorithm is proposed to extract local numerical features of the time sequence and estimate the upcoming anomaly. The experimental results show that our proposed multi-step prediction method can achieve a higher prediction accuracy than traditional method in wall shear stress dataset, and the LAAP algorithm performs better than the absolute value-based method in anomaly detection task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源