论文标题
真实网络中层次骨架的几何检测
Geometric detection of hierarchical backbones in real networks
论文作者
论文摘要
层次结构渗透到真实网络的结构,其节点可以根据不同的特征对其进行排名。但是,网络远非树状结构,而层次排序的检测仍然是一个挑战,这受到小世界特性和大量周期的存在,特别是聚类的挑战。在这里,我们使用非导向网络的几何表示来实现对层次结构的丰富解释,该解释集成了定义节点的普及和它们之间的相似性的特征,因此,节点越相似于较不受欢迎的邻居,这种关系的层次结构载荷越高。几何方法使我们能够衡量节点的局部贡献以及统一框架内的层次结构的链接。此外,我们提出了一种链接过滤方法,即相似性滤波器,能够提取层次骨架,其中包含代表几何异质网络的最大熵零模型的统计上显着偏差的链接。我们将几何方法应用于检测不同域中真实网络的相似性骨架,发现骨干在所有尺度上都保留了局部拓扑特征。有趣的是,我们还发现,相似性骨干有利于在进化动力学建模社会困境中的合作。
Hierarchies permeate the structure of real networks, whose nodes can be ranked according to different features. However, networks are far from tree-like structures and the detection of hierarchical ordering remains a challenge, hindered by the small-world property and the presence of a large number of cycles, in particular clustering. Here, we use geometric representations of undirected networks to achieve an enriched interpretation of hierarchy that integrates features defining popularity of nodes and similarity between them, such that the more similar a node is to a less popular neighbor the higher the hierarchical load of the relationship. The geometric approach allows us to measure the local contribution of nodes and links to the hierarchy within a unified framework. Additionally, we propose a link filtering method, the similarity filter, able to extract hierarchical backbones containing the links that represent statistically significant deviations with respect to the maximum entropy null model for geometric heterogeneous networks. We applied our geometric approach to the detection of similarity backbones of real networks in different domains and found that the backbones preserve local topological features at all scales. Interestingly, we also found that similarity backbones favor cooperation in evolutionary dynamics modelling social dilemmas.