论文标题

基于深度学习的MMWave大型MIMO系统的联合混合处理框架

Framework on Deep Learning Based Joint Hybrid Processing for mmWave Massive MIMO Systems

论文作者

Dong, Peihao, Zhang, Hua, Li, Geoffrey Ye

论文摘要

对于毫米波(MMWave),大量多输入多输出(MIMO)系统,混合加工体系结构对于显着降低复杂性和成本至关重要,但在发射器和接收器上共同优化的复杂性和成本非常具有挑战性。在本文中,深度学习(DL)应用于设计一种新型的关节混合处理框架(JHPF),该框架允许使用背部传播允许端到端优化。所提出的框架包括三个部分:混合处理设计器,信号流模拟器和信号解调器,该框架通过使用神经网络(NNS)来输出收发器的混合处理矩阵,并将检测到的符号映射到空气上的信号传输,并分别使用NN将检测到的符号映射到原始位。通过最大程度地减少回收和原始位之间的跨透明镜头损失,所提出的框架可以共同和隐式地在收发器上优化模拟和数字处理矩阵,而不是近似于预设的标签矩阵,并且在理论上证明了其训练性。它也可以通过简单地修改训练数据的结构来直接应用于正交频分多路复用系统。仿真结果表明,所提出的DL-JHPF胜过现有的混合处理方案,并且对不匹配的通道状态信息和通道方案的强大,并且运行时大大减少。

For millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, hybrid processing architecture is essential to significantly reduce the complexity and cost but is quite challenging to be jointly optimized over the transmitter and receiver. In this paper, deep learning (DL) is applied to design a novel joint hybrid processing framework (JHPF) that allows end-to-end optimization by using back propagation. The proposed framework includes three parts: hybrid processing designer, signal flow simulator, and signal demodulator, which outputs the hybrid processing matrices for the transceiver by using neural networks (NNs), simulates the signal transmission over the air, and maps the detected symbols to the original bits by using the NN, respectively. By minimizing the cross-entropy loss between the recovered and original bits, the proposed framework optimizes the analog and digital processing matrices at the transceiver jointly and implicitly instead of approximating pre-designed label matrices, and its trainability is proved theoretically. It can be also directly applied to orthogonal frequency division multiplexing systems by simply modifying the structure of the training data. Simulation results show the proposed DL-JHPF outperforms the existing hybrid processing schemes and is robust to the mismatched channel state information and channel scenarios with the significantly reduced runtime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源