论文标题

无参数和快速的非线性分段过滤。应用于实验物理

Parameter-free and fast nonlinear piecewise filtering. Application to experimental physics

论文作者

Pascal, Barbara, Pustelnik, Nelly, Abry, Patrice, Géminard, Jean-Christophe, Vidal, Valérie

论文摘要

许多非线性物理学的领域在本质上非常不同,它们产生了信号和图像,它们具有共同的特征,即基本上由分段均匀阶段组成。因此,分析来自相应实验的信号和图像以构建相关的物理解释通常需要检测到此类阶段并准确估算其特征(边界,特征差异,...)。但是,物理相关性的情况通常会带有低至非常低的信号与噪声比,从而排除了经典线性过滤进行分析和转化的标准使用,因此要求设计高级非线性信号/图像滤波技术。此外,在处理实验物理信号/图像时,第二个限制是需要分析的大量数据,以得出需要设计快速算法的准确和相关结论。本工作提出了一个基于近端算法和Stein无偏见的估计量原理的统一信号/图像非线性过滤过程,具有快速算法和数据驱动的自动化超参数调整。这些工具的兴趣和潜力在低调固体摩擦信号和多孔介质多相流方面进行了说明。

Numerous fields of nonlinear physics, very different in nature, produce signals and images, that share the common feature of being essentially constituted of piecewise homogeneous phases. Analyzing signals and images from corresponding experiments to construct relevant physical interpretations thus often requires detecting such phases and estimating accurately their characteristics (borders, feature differences, ...). However, situations of physical relevance often comes with low to very low signal to noise ratio precluding the standard use of classical linear filtering for analysis and denoising and thus calling for the design of advanced nonlinear signal/image filtering techniques. Additionally, when dealing with experimental physics signals/images, a second limitation is the large amount of data that need to be analyzed to yield accurate and relevant conclusions requiring the design of fast algorithms. The present work proposes a unified signal/image nonlinear filtering procedure, with fast algorithms and a data-driven automated hyperparameter tuning, based on proximal algorithms and Stein unbiased estimator principles. The interest and potential of these tools are illustrated at work on low-confinement solid friction signals and porous media multiphase flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源