论文标题
使用表面网络检测和分析移动热点
Detecting and Analyzing Mobility Hotspots using Surface Networks
论文作者
论文摘要
在过去的几十年中,收集和存储移动对象数据的数据的功能急剧增加。持续的困难是总结大量移动对象的集合。本文开发了提取和分析具有相对较高迁移率活动水平的热点或位置的方法。我们使用内核密度估计(KDE)将大量移动对象转换为光滑,连续的表面。然后,我们开发一种拓扑算法来提取表面的临界几何特征。这些包括临界点(峰,坑和通行证)和临界线(Ridgelines和课程线)。我们将峰和相应的山脊线连接起来,以产生总结表面拓扑结构的表面网络。我们将图理论指数应用于分析表征表面及其随时间变化。为了说明我们的方法,我们将技术应用于中国上海收集的出租车数据。我们发现,在清晨,下午和晚上的正常活动时间内,热点空间分布的复杂性有所提高,并且早上热点空间分布的连通性升高,因为出租车专注于服务旅行。这些结果符合研究领域中有关人类活动模式的科学和轶事知识。
Capabilities for collecting and storing data on mobile objects have increased dramatically over the past few decades. A persistent difficulty is summarizing large collections of mobile objects. This paper develops methods for extracting and analyzing hotspots or locations with relatively high levels of mobility activity. We use kernel density estimation (KDE) to convert a large collection of mobile objects into a smooth, continuous surface. We then develop a topological algorithm to extract critical geometric features of the surface; these include critical points (peaks, pits and passes) and critical lines (ridgelines and course-lines). We connect the peaks and corresponding ridgelines to produce a surface network that summarizes the topological structure of the surface. We apply graph theoretic indices to analytically characterize the surface and its changes over time. To illustrate our approach, we apply the techniques to taxi cab data collected in Shanghai, China. We find increases in the complexity of the hotspot spatial distribution during normal activity hours in the late morning, afternoon and evening and a spike in the connectivity of the hotspot spatial distribution in the morning as taxis concentrate on servicing travel to work. These results match with scientific and anecdotal knowledge about human activity patterns in the study area.