论文标题

一个稀疏且局部连贯的形式性面部模型,用于跨异质3D面的密集语义对应关系

A Sparse and Locally Coherent Morphable Face Model for Dense Semantic Correspondence Across Heterogeneous 3D Faces

论文作者

Ferrari, Claudio, Berretti, Stefano, Pala, Pietro, Del Bimbo, Alberto

论文摘要

3D形态模型(3DMM)是代表3D面形的强大统计工具。要构建3DMM,需要全点对点对应的面部扫描集,其建模功能直接取决于训练数据中所包含的可变性。因此,为了提高3DMM的描述能力,在身份,种族或表达式方面具有足够多样性的异质扫描中建立密集的对应关系。在此手稿中,我们提出了一种全自动方法,该方法利用3DMM将其密集的语义注释在RAW 3D面上传递,并在它们之间建立了密集的对应关系。我们提出了一种新颖的配方,以学习一组稀疏的变形组件,并在面部局部支撑,并与原始的非刚性变形算法一起,允许3DMM精确地拟合看不见的面部并传递其语义注释。我们对方法进行了广泛的实验,表明它可以有效地推广到高度不同的样品,并在存在复杂的面部表情的情况下准确地建立了密集的对应关系。通过从9,000多个完全注册的扫描中,通过将三个大型数据集一起构建一个多种大规模的3DMM,可以证明密集注册的准确性。

The 3D Morphable Model (3DMM) is a powerful statistical tool for representing 3D face shapes. To build a 3DMM, a training set of face scans in full point-to-point correspondence is required, and its modeling capabilities directly depend on the variability contained in the training data. Thus, to increase the descriptive power of the 3DMM, establishing a dense correspondence across heterogeneous scans with sufficient diversity in terms of identities, ethnicities, or expressions becomes essential. In this manuscript, we present a fully automatic approach that leverages a 3DMM to transfer its dense semantic annotation across raw 3D faces, establishing a dense correspondence between them. We propose a novel formulation to learn a set of sparse deformation components with local support on the face that, together with an original non-rigid deformation algorithm, allow the 3DMM to precisely fit unseen faces and transfer its semantic annotation. We extensively experimented our approach, showing it can effectively generalize to highly diverse samples and accurately establish a dense correspondence even in presence of complex facial expressions. The accuracy of the dense registration is demonstrated by building a heterogeneous, large-scale 3DMM from more than 9,000 fully registered scans obtained by joining three large datasets together.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源