论文标题

两轴两旋挤压状态

Two-axis two-spin squeezed states

论文作者

Kitzinger, Jonas, Chaudhary, Manish, Kondappan, Manikandan, Ivannikov, Valentin, Byrnes, Tim

论文摘要

检查了两轴反向汉密尔顿的两轴概括所产生的状态。我们通过计算各种数量(例如挤压,旋转期望值,概率分布,纠缠,wigner函数和贝尔相关性)来分析短时间和长时间尺度的行为。在大型自旋组合和短相互作用时间的极限中,可以通过两种模式挤压真空状态描述该状态。对于Qubits,产生了贝尔州的纠缠。我们发现,汉密尔顿大约产生两种类型的自旋 - EPR状态,并且时间演化之间会产生它们之间的振荡。以类似于钟状态和两种模式挤压真空状态的基础不变性的方式,自旋 - EPR状态的FOCK状态相关性是基础不变的。我们发现,尽管违规行为随着整体规模的增加而减少,但有可能违反与此类状态的铃铛不平等。还提出了检测纠缠的有效方法,并计算出最佳时间的公式,以增强各种特性。

The states generated by the two-spin generalization of the two-axis countertwisting Hamiltonian are examined. We analyze the behavior at both short and long timescales, by calculating various quantities such as squeezing, spin expectation values, probability distributions, entanglement, Wigner functions, and Bell correlations. In the limit of large spin ensembles and short interaction times, the state can be described by a two-mode squeezed vacuum state; for qubits, Bell state entanglement is produced. We find that the Hamiltonian approximately produces two types of spin-EPR states, and the time evolution produces aperiodic oscillations between them. In a similar way to the basis invariance of Bell states and two-mode squeezed vacuum states, the Fock state correlations of spin-EPR states are basis invariant. We find that it is possible to violate a Bell inequality with such states, although the violation diminishes with increasing ensemble size. Effective methods to detect entanglement are also proposed, and formulas for the optimal times to enhance various properties are calculated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源