论文标题
我们是否渴望3D LiDAR数据进行语义分割?调查和实验研究
Are We Hungry for 3D LiDAR Data for Semantic Segmentation? A Survey and Experimental Study
论文作者
论文摘要
3D语义细分是机器人和自动驾驶应用程序的基本任务。最近的作品集中在使用深度学习技术上,而开发精细的3D LIDAR数据集则非常强大,需要专业技能。数据集不足引起的性能限制称为数据饥饿问题。这项研究提供了有关以下问题的全面调查和实验研究:我们是否渴望3D激光雷达数据进行语义分割?研究以三个级别进行。首先,对主要的3D激光雷达数据集进行了广泛的审查,然后对三个代表性数据集进行了统计分析,以获得对数据集的大小和多样性的深入看法,这是学习深层模型的关键因素。其次,对最先进的3D语义分割进行了系统的审查,然后进行了三种代表性深度学习方法的实验和跨检查,以了解数据集的大小和多样性如何影响深层模型的性能。最后,对解决数据饥饿问题的现有努力进行了系统的调查,对方法论和数据集的观点进行了进行,随后是关于剩余问题和开放问题的深刻见解的讨论,这是我们最大程度地了解的,这是第一个使用深入的学习技术来分析3D语义细分的数据饥饿问题,并在文献中进行了深入的学习技术,并进行了统计分析和交叉分析和交叉分析,以及统计分析,以及统计学分析和交叉。我们分享发现和讨论,这可能会导致未来作品的潜在主题。
3D semantic segmentation is a fundamental task for robotic and autonomous driving applications. Recent works have been focused on using deep learning techniques, whereas developing fine-annotated 3D LiDAR datasets is extremely labor intensive and requires professional skills. The performance limitation caused by insufficient datasets is called data hunger problem. This research provides a comprehensive survey and experimental study on the question: are we hungry for 3D LiDAR data for semantic segmentation? The studies are conducted at three levels. First, a broad review to the main 3D LiDAR datasets is conducted, followed by a statistical analysis on three representative datasets to gain an in-depth view on the datasets' size and diversity, which are the critical factors in learning deep models. Second, a systematic review to the state-of-the-art 3D semantic segmentation is conducted, followed by experiments and cross examinations of three representative deep learning methods to find out how the size and diversity of the datasets affect deep models' performance. Finally, a systematic survey to the existing efforts to solve the data hunger problem is conducted on both methodological and dataset's viewpoints, followed by an insightful discussion of remaining problems and open questions To the best of our knowledge, this is the first work to analyze the data hunger problem for 3D semantic segmentation using deep learning techniques that are addressed in the literature review, statistical analysis, and cross-dataset and cross-algorithm experiments. We share findings and discussions, which may lead to potential topics in future works.