论文标题
在二维不均匀的强烈耦合的尘土等离子体中旋转涡流:剪切和螺旋密度波
Rotating vortices in two-dimensional inhomogeneous strongly coupled dusty plasmas: shear and spiral-density waves
论文作者
论文摘要
在强耦合方案中,可以很容易地执行尘土飞扬的血浆实验。在我们以前的工作中[物理学。等离子体21,073705(2014)],我们以恒定密度探索了这种等离子体,并观察到来自旋转涡流的横向剪切(TS)波。实验室灰尘的等离子体是同质等离子体的良好例子,但是异质性(例如,密度,温度,充电)可能是由于存在空隙,具有不同方向的不同域,磁性和/或电力,尺寸/电荷等外力的存在,在这里,我们在这里进行了圆形的圆型和均匀的圆形均应响应,我们研究了如何平滑的圆形小质子,并响应圆形的旋转均匀的既定均匀的均应均匀的旋转均匀的均应柔和的旋转均应。 隔断。为此,我们在广义流体力学(GHD)流体模型的框架中进行了一系列二维粘弹性流体模拟。旋转涡旋放置在两个不可压缩流体的界面上,其密度不同。光滑的旋转涡流导致两件事:首先,密度拉伸以形成螺旋密度波;其次,TS波根据剪切波速度径向传播到周围的介质中。我们注意到,螺旋密度的臂在早期是可以区分的,而后来被涂抹了。锋利的旋转涡流会产生尖锐的剪切流,反过来又有利于界面上开尔文 - 霍尔姆尔兹(KH)的不稳定性。在GHD系统的这种流中,发射的TS波和KH不稳定性的涡流之间的相互作用扭曲了转子周围的常规螺旋密度臂的形成
Dusty plasma experiments can be performed quite easily in strong coupling regime. In our previous work [Phys. Plasmas 21, 073705 (2014)], we numerically explored such plasmas with constant density and observed the transverse shear (TS) waves from a rotating vortex. Laboratory dusty plasmas are good examples of homogeneous plasmas however heterogeneity (e.g. density, temperature, charge) may be due to the existence of voids, different domains with different orientations, presence of external forces like magnetic and/or electric, size/charge imbalance, etc. Here, we examine how the density heterogeneity in dusty plasmas responds to the circularly rotating vortex monopoles, namely smooth and sharp cut-off. For this purpose we have carried out a series of two-dimensional viscoelastic fluid simulations in the framework of generalized hydrodynamics (GHD) fluid model. The rotating vortices are placed at the interface of two incompressible fluids with different densities. The smooth rotating vortex causes two things: First, the densities are stretched to form the spiral density waves; secondly, the TS waves propagate radially into the surrounding media according to the shear wave speed. We notice that the spiral density arms are distinguishable in the early time while later get smeared out. The sharp rotating vortex creates sharp shear flows which in turn favor the Kelvin-Helmholtz (KH) instability across the interfaces. In such flows for the GHD system, the interplay between the emitted TS waves and the vortices of KH instability distorts the formation of the regular spiral density arms around the rotor