论文标题
用于实时检测光学晶格中原子动力学的空腔探针
Cavity probe for real-time detection of atom dynamics in an optical lattice
论文作者
论文摘要
我们提出并证明了光学晶格中原子空间分布的实时次波腔QED测量值。最初用第二个“探针”驻波探测光腔模式的一个“陷阱”常驻波。由于频率被一个自由光谱范围偏移,陷阱的节点落在探针的反节点上,在$ {\ oft} $ 10 $^4 $ lattice位点周围的腔中心周围。该晶格位点独立的原子腔耦合,即使原子分布在许多晶格位点上,也可以对原子动力学进行高灵敏度检测。为了证明,我们通过监视从陷阱晶格突然释放后,通过监视其膨胀$ {\大约100 nm,以$ {<} $ 10 $μ$ s的价格测量20-70 $ $ k atom的温度。原子腔耦合烙印在探针传输上的原子动力学。新技术将改善光学晶格中BLOCH振荡和其他原子动力学的非破坏性检测。
We propose and demonstrate real-time sub-wavelength cavity QED measurements of the spatial distribution of atoms in an optical lattice. Atoms initially confined in one "trap" standing wave of an optical cavity mode are probed with a second "probe" standing wave. With frequencies offset by one free spectral range, the nodes of the trap fall on the anti-nodes of the probe in the ${\approx}$10$^4$ lattice sites around the center of the cavity. This lattice site independent atom-cavity coupling enables high sensitivity detection of atom dynamics even with atoms spread over many lattice sites. To demonstrate, we measure the temperature of 20-70 $μ$K atom ensembles in ${<}$10 $μ$s by monitoring their expansion of ${\approx}$100 nm after sudden release from the trap lattice. Atom-cavity coupling imprints the atom dynamics on the probe transmission. The new technique will enable improved non-destructive detection of Bloch oscillations and other atom dynamics in optical lattices.