论文标题
MLMODELCI:高效MLAA的自动云平台
MLModelCI: An Automatic Cloud Platform for Efficient MLaaS
论文作者
论文摘要
MLMODELCI为多媒体研究人员和开发人员提供了一个有效的机器学习(ML)服务的一站式平台。该系统利用DevOps技术优化,测试和管理模型。它还将这些优化和验证的模型作为云服务(MLAAS)进行了容器和部署。本质上,MLModelci是管家,可帮助用户发布模型。首先将模型自动转换为优化格式以进行生产目的,然后在不同的设置下进行介绍(例如,批处理大小和硬件)。分析信息可以用作平衡MLAA绩效和成本之间的权衡的准则。最后,系统将模型停靠,以方便部署到云环境。 MLModelci的一个关键功能是实现控制器,该控制器允许弹性评估,该评估仅在维持在线服务质量的同时使用空闲工人。我们的系统弥合了当前的ML培训和服务系统之间的差距,从而使开发人员摆脱了经常与服务部署相关的手动和乏味的工作。我们在Apache 2.0许可下以GitHub的开源项目发布该平台,目的是促进和简化更多大型ML应用程序和研究项目。
MLModelCI provides multimedia researchers and developers with a one-stop platform for efficient machine learning (ML) services. The system leverages DevOps techniques to optimize, test, and manage models. It also containerizes and deploys these optimized and validated models as cloud services (MLaaS). In its essence, MLModelCI serves as a housekeeper to help users publish models. The models are first automatically converted to optimized formats for production purpose and then profiled under different settings (e.g., batch size and hardware). The profiling information can be used as guidelines for balancing the trade-off between performance and cost of MLaaS. Finally, the system dockerizes the models for ease of deployment to cloud environments. A key feature of MLModelCI is the implementation of a controller, which allows elastic evaluation which only utilizes idle workers while maintaining online service quality. Our system bridges the gap between current ML training and serving systems and thus free developers from manual and tedious work often associated with service deployment. We release the platform as an open-source project on GitHub under Apache 2.0 license, with the aim that it will facilitate and streamline more large-scale ML applications and research projects.