论文标题
AR-DAE:迈向公正的神经熵梯度估计
AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation
论文作者
论文摘要
熵在机器学习中无处不在,但通常要计算任意连续随机变量的分布的熵是棘手的。在本文中,我们提出了摊销的残留denoising自动编码器(AR-DAE),以近似对数密度函数的梯度,可用于估计熵的梯度。摊销使我们能够通过接近常规DAE的渐近最优性来显着降低梯度近似器的误差,在这种情况下,估计是公正的。我们对所提出方法的近似误差进行了理论和实验分析,并对启发式方法进行了广泛的研究以确保其稳健性。最后,使用所提出的梯度近似器来估计熵的梯度,我们证明了具有变化自动编码器的密度估计的最先进性能,并通过软性参数批评进行连续控制。
Entropy is ubiquitous in machine learning, but it is in general intractable to compute the entropy of the distribution of an arbitrary continuous random variable. In this paper, we propose the amortized residual denoising autoencoder (AR-DAE) to approximate the gradient of the log density function, which can be used to estimate the gradient of entropy. Amortization allows us to significantly reduce the error of the gradient approximator by approaching asymptotic optimality of a regular DAE, in which case the estimation is in theory unbiased. We conduct theoretical and experimental analyses on the approximation error of the proposed method, as well as extensive studies on heuristics to ensure its robustness. Finally, using the proposed gradient approximator to estimate the gradient of entropy, we demonstrate state-of-the-art performance on density estimation with variational autoencoders and continuous control with soft actor-critic.