论文标题
在Colin de Verdiere图形和一分钱图上
On the Colin de Verdiere graph number and penny graphs
论文作者
论文摘要
图G的Colin de verdiere数量是μ(g)表示的,是G的光谱不变性,与其某些拓扑特性有关。例如,μ(g)\ leq 3 iff g是平面。一分钱图是平面磁盘相等的触点图,平面上的内部插入。在本说明中,当补充\ bar {g}是一分钱图时,我们证明了μ(g)的下限。
The Colin de Verdiere number of graph G, denoted by μ(G), is a spectral invariant of G that is related to some of its topological properties. For example, μ(G) \leq 3 iff G is planar. A penny graph is the contact graph of equal-radii disks with disjoint interiors in the plane. In this note we prove lower bounds on μ(G) when the complement \bar{G} is a penny graph.