论文标题

高维度的相位检索:统计和计算相变

Phase retrieval in high dimensions: Statistical and computational phase transitions

论文作者

Maillard, Antoine, Loureiro, Bruno, Krzakala, Florent, Zdeborová, Lenka

论文摘要

我们考虑从$ m $(可能是嘈杂)观察值$y_μ= |重建$ n $二维的真实或复杂信号的相位检索问题\ sum_ {i = 1}^nφ_{μi} x^{\ star} _i/\ sqrt {n} | $,用于一大批相关的真实和复杂的随机感应矩阵$ \mathbfφ$,在高维设置中,$ m,n \ n \ n \ n $ n $ n $ c。首先,我们在统计上可以达到最低可能的估计误差来得出尖锐的渐近差异,并揭示了弱捕获阈值的尖锐相变的存在,这是矩阵$ \mathbfφ$的奇异值的函数。这是通过提供统计力学复制方法首先获得的结果的严格证明来实现的。特别是,向全等级矩阵的信息理论转变为$α= 1 $(实际情况)和$α= 2 $(复杂情况)。其次,我们分析了此问题最著名的多项式时间算法的性能 - 近似消息 - 通过 - 根据$ \MathBfφ$的频谱属性,建立了统计到载体间隙的存在。我们的工作提供了对一系列随机矩阵的高维相检索中统计和算法阈值的广泛分类。

We consider the phase retrieval problem of reconstructing a $n$-dimensional real or complex signal $\mathbf{X}^{\star}$ from $m$ (possibly noisy) observations $Y_μ= | \sum_{i=1}^n Φ_{μi} X^{\star}_i/\sqrt{n}|$, for a large class of correlated real and complex random sensing matrices $\mathbfΦ$, in a high-dimensional setting where $m,n\to\infty$ while $α= m/n=Θ(1)$. First, we derive sharp asymptotics for the lowest possible estimation error achievable statistically and we unveil the existence of sharp phase transitions for the weak- and full-recovery thresholds as a function of the singular values of the matrix $\mathbfΦ$. This is achieved by providing a rigorous proof of a result first obtained by the replica method from statistical mechanics. In particular, the information-theoretic transition to perfect recovery for full-rank matrices appears at $α=1$ (real case) and $α=2$ (complex case). Secondly, we analyze the performance of the best-known polynomial time algorithm for this problem -- approximate message-passing -- establishing the existence of a statistical-to-algorithmic gap depending, again, on the spectral properties of $\mathbfΦ$. Our work provides an extensive classification of the statistical and algorithmic thresholds in high-dimensional phase retrieval for a broad class of random matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源