论文标题

关于BMO空间中边界值的Schrödinger方程的Dirichlet问题

On the Dirichlet problem for the Schrödinger equation with boundary value in BMO space

论文作者

Jiang, Renjin, Li, Bo

论文摘要

令$(x,d,μ)$为满足$ Q $ $ Q $ - Q> 1 $的度量空间,以及$ l^2 $-poincaré不平等。 Let $\mathscr{L}=\mathcal{L}+V$ be a Schrödinger operator on $X$, where $\mathcal{L}$ is a non-negative operator generalized by a Dirichlet form, and $V$ is a non-negative Muckenhoupt weight that satisfies a reverse Hölder condition $RH_q$ for some $q\ge (Q+1)/2 $。我们证明了$(\ Mathscr {l} - \ partial_t^2)u = 0 $ on $ x \ times \ times \ mathbb {r} _+$满足carleson条件,$ \ sup_ {b(x_b,r_b,r_b)} \ frac {1} {b(b(b) \ int_ {0}^{r_b} \ int_ {b(x_b,r_b)} | t \ nabla u(x,x,x,t)|^2 \ frac {\ mathrm {d}μ\ mathrm {d} Schrödinger运算符$ \ Mathscr {l} $带有与$ \ Mathscr {l} $相关的BMO空间中的跟踪。

Let $(X,d,μ)$ be a metric measure space satisfying a $Q$-doubling condition, $Q>1$, and an $L^2$-Poincaré inequality. Let $\mathscr{L}=\mathcal{L}+V$ be a Schrödinger operator on $X$, where $\mathcal{L}$ is a non-negative operator generalized by a Dirichlet form, and $V$ is a non-negative Muckenhoupt weight that satisfies a reverse Hölder condition $RH_q$ for some $q\ge (Q+1)/2$. We show that a solution to $(\mathscr{L}-\partial_t^2)u=0$ on $X\times \mathbb{R}_+$ satisfies the Carleson condition, $$\sup_{B(x_B,r_B)}\frac{1}{μ(B(x_B,r_B))} \int_{0}^{r_B} \int_{B(x_B,r_B)} |t\nabla u(x,t)|^2 \frac{\mathrm{d}μ\mathrm{d} t}{t}<\infty,$$ if and only if, $u$ can be represented as the Poisson integral of the Schrödinger operator $\mathscr{L}$ with trace in the BMO space associated with $\mathscr{L}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源