论文标题

基于平行树的自适应网格的汇总未有限元方法

The aggregated unfitted finite element method on parallel tree-based adaptive meshes

论文作者

Badia, Santiago, Martín, Alberto F., Neiva, Eric, Verdugo, Francesc

论文摘要

在这项工作中,我们提出了一种自适应的未有限元方案,该方案将汇总的有限元方法与并行自适应网格改进结合在一起。我们在当地适应的笛卡尔森林网格上引入了新型的可扩展分布式内存实现。我们提出了一种两步算法,通过离散的扩展运算符构建手头上的有限元空间,该算子仔细地混合了有问题的自由度的聚合约束,从而摆脱了小切口细胞问题,并消除了标准的悬挂自由度约束,从而确保对非构造网格的痕量持续性。遵循这种方法,我们得出一个有限元空间,可以表示为原始的元素,以及定义明确的线性约束。此外,使用现有大规模有限元代码中可用的标准功能,它需要最小的并行化工作。数值实验证明了其最佳的网格适应能力,可削减位置的鲁棒性和对经典泊松$ HP $ - 适应性基准的稳健性和并行效率。我们的工作为在大规模逼真的场景中使用汇总有限元方法进行了功能和几何误差驱动的动态网格适应的路径。同样,它可以为桥接其他可扩展的未固定方法和平行自适应网状精炼提供指导。

In this work, we present an adaptive unfitted finite element scheme that combines the aggregated finite element method with parallel adaptive mesh refinement. We introduce a novel scalable distributed-memory implementation of the resulting scheme on locally-adapted Cartesian forest-of-trees meshes. We propose a two-step algorithm to construct the finite element space at hand by means of a discrete extension operator that carefully mixes aggregation constraints of problematic degrees of freedom, which get rid of the small cut cell problem, and standard hanging degree of freedom constraints, which ensure trace continuity on non-conforming meshes. Following this approach, we derive a finite element space that can be expressed as the original one plus well-defined linear constraints. Moreover, it requires minimum parallelization effort, using standard functionality available in existing large-scale finite element codes. Numerical experiments demonstrate its optimal mesh adaptation capability, robustness to cut location and parallel efficiency, on classical Poisson $hp$-adaptivity benchmarks. Our work opens the path to functional and geometrical error-driven dynamic mesh adaptation with the aggregated finite element method in large-scale realistic scenarios. Likewise, it can offer guidance for bridging other scalable unfitted methods and parallel adaptive mesh refinement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源