论文标题

GCICENET:用于准确分类水相的图形卷积网络

GCIceNet: A Graph Convolutional Network for Accurate Classification of Water Phases

论文作者

Kim, QHwan, Ko, Joon-Hyuk, Kim, Sunghoon, Jhe, Wonho

论文摘要

理解基于局部结构的水分子的阶段对于理解其异常特性至关重要。但是,由于通过氢键形成的复杂结构基序,常规阶参数代表了水分子并不完全代表。在本文中,我们开发了一个GCICENET,该GCICENET会自动生成基于机器的订单参数,以通过监督和无监督的学习来对水分子的阶段进行分类。 GCICENET中的多个图卷积层可以学习复杂的氢键网络的拓扑信息。它显示了预测散装系统和冰/蒸气界面系统中水分子相的准确性的实质性提高。相对重要的分析表明,GCICENET可以捕获所隐藏在输入数据中的给定系统的结构特征。随着分子动力学模拟提供的大量数据,GCICENET有望成为玻璃状液体和生物分子周围水合层领域的强大工具。

Understanding phases of water molecules based on local structure is essential for understanding their anomalous properties. However, due to complicated structural motifs formed via hydrogen bonds, conventional order parameters represent the water molecules incompletely. In this paper, we develop a GCIceNet, which automatically generates machine-based order parameters for classifying the phases of the water molecules via supervised and unsupervised learning. Multiple graph convolutional layers in the GCIceNet can learn topological informations of the complex hydrogen bond networks. It shows a substantial improvement of accuracy for predicting the phase of water molecules in the bulk system and the ice/vapor interface system. A relative importance analysis shows that the GCIceNet can capture the structural features of the given system hidden in the input data. Augmented with the vast amount of data provided by molecular dynamics simulations, the GCIceNet is expected to serve as a powerful tool for the fields of glassy liquids and hydration layers around biomolecules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源