论文标题

Wilks的半参数回归定理,具有弱依赖性数据

Wilks' theorem for semiparametric regressions with weakly dependent data

论文作者

de Chaumaray, Marie Du Roy, Marbac, Matthieu, Patilea, Valentin

论文摘要

经验可能性推断扩展到一类用于固定,弱依赖性序列的半参数模型。鉴于其过去以及协变量向量的当前和过去值,将部分线性的单个指数回归用于该系列的条件平均值。添加了该系列条件差异的参数模型,以捕获进一步的非线性效应。我们提出了固定数量的合适矩方程,以表征平均值和方差模型。我们得出一个经验对数可能性比率,其中包括多个函数的非参数估计器,我们表明该比率与已知这些函数的情况相同。

The empirical likelihood inference is extended to a class of semiparametric models for stationary, weakly dependent series. A partially linear single-index regression is used for the conditional mean of the series given its past, and the present and past values of a vector of covariates. A parametric model for the conditional variance of the series is added to capture further nonlinear effects. We propose a fixed number of suitable moment equations which characterize the mean and variance model. We derive an empirical log-likelihood ratio which includes nonparametric estimators of several functions, and we show that this ratio has the same limit as in the case where these functions are known.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源