论文标题

(3+1)d的拓扑阶段d仪表模型中的差异边界和类似弦的激发

Gapped boundaries and string-like excitations in (3+1)d gauge models of topological phases

论文作者

Bullivant, Alex, Delcamp, Clement

论文摘要

我们研究了(3+1)Dijkgraaf-witten理论的晶格哈密顿的实现,并具有宽大的边界。除了散装环状激发外,汉密尔顿还产生了散装的敌对弦乐激发,这些激发在边界上终止。使用管代数方法,我们对这种激发进行了分类并得出相应的表示理论。通过尺寸还原参数,我们将此管代数与描述(2+1)d边界点的激发在两个间隙边界之间的接口处的激发相关。众所周知,这种类似点的激发被编码为输入融合类别的模块类别的生物。利用此对应关系,我们定义了一个生物学,该生物是在缝隙边界上编码类似字符串的激发,表明它是组毕业2个矢量空间的输入生物学中心的一个子生物。在此过程中,我们解释了(3+1)d中的间隙边界如何在此输入bicategory上通过所谓的伪代核心对象标记。

We study lattice Hamiltonian realisations of (3+1)d Dijkgraaf-Witten theory with gapped boundaries. In addition to the bulk loop-like excitations, the Hamiltonian yields bulk dyonic string-like excitations that terminate at gapped boundaries. Using a tube algebra approach, we classify such excitations and derive the corresponding representation theory. Via a dimensional reduction argument, we relate this tube algebra to that describing (2+1)d boundary point-like excitations at interfaces between two gapped boundaries. Such point-like excitations are well known to be encoded into a bicategory of module categories over the input fusion category. Exploiting this correspondence, we define a bicategory that encodes the string-like excitations ending at gapped boundaries, showing that it is a sub-bicategory of the centre of the input bicategory of group-graded 2-vector spaces. In the process, we explain how gapped boundaries in (3+1)d can be labelled by so-called pseudo-algebra objects over this input bicategory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源