论文标题

Matchgan:一个自我监督的半监督条件生成对抗网络

MatchGAN: A Self-Supervised Semi-Supervised Conditional Generative Adversarial Network

论文作者

Sun, Jiaze, Bhattarai, Binod, Kim, Tae-Kyun

论文摘要

我们在半监督的环境下提出了一种新型的自我监督学习方法,用于有条件生成的对抗网络(GAN)。与以前的自我监督方法不同,这些方法通常涉及图像空间上的几何增强,例如预测旋转角度,我们的借口任务利用了标签空间。我们通过从标签空间中随机采样明智的标签来执行增强,并将其作为目标标签分配给与标签标签相同的分布的丰富的未标记示例。然后将图像通过目标标签翻译成正面和负对,并将其分组为正面和负对,作为我们借口任务的训练示例,涉及优化歧视者方面的辅助匹配损失。我们对两个具有挑战性的基准测试了Celeba和Rafd测试了我们的方法,并使用标准指标(包括Fréchet成立距离,成立得分和属性分类率)评估了结果。广泛的经验评估证明了我们提出的方法对竞争性基线和现有艺术的有效性。特别是,我们的方法超过了基线,只有20%用于训练基线的标签示例。

We present a novel self-supervised learning approach for conditional generative adversarial networks (GANs) under a semi-supervised setting. Unlike prior self-supervised approaches which often involve geometric augmentations on the image space such as predicting rotation angles, our pretext task leverages the label space. We perform augmentation by randomly sampling sensible labels from the label space of the few labelled examples available and assigning them as target labels to the abundant unlabelled examples from the same distribution as that of the labelled ones. The images are then translated and grouped into positive and negative pairs by their target labels, acting as training examples for our pretext task which involves optimising an auxiliary match loss on the discriminator's side. We tested our method on two challenging benchmarks, CelebA and RaFD, and evaluated the results using standard metrics including Fréchet Inception Distance, Inception Score, and Attribute Classification Rate. Extensive empirical evaluation demonstrates the effectiveness of our proposed method over competitive baselines and existing arts. In particular, our method surpasses the baseline with only 20% of the labelled examples used to train the baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源