论文标题

通过整合神经感知,语法解析和象征性推理,闭环神经符号学习

Closed Loop Neural-Symbolic Learning via Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning

论文作者

Li, Qing, Huang, Siyuan, Hong, Yining, Chen, Yixin, Wu, Ying Nian, Zhu, Song-Chun

论文摘要

神经符号计算的目的是整合连接主义者和象征主义范式。先前的方法使用增强学习(RL)方法学习神经符号模型,该方法忽略了符号推理模块中的误差传播,因此以稀疏的奖励缓慢收敛。在本文中,我们通过(1)通过(1)将\ textbf {grammar}模型引入\ textit {smertbolic Prior}以桥接神经感知和符号推理,以及(2)提出一个新颖的人类a a propifure themimics-apopers operightim,在本文中,我们解决了这些问题并关闭神经符号学习的循环。符号推理模块有效。我们进一步将提出的学习框架解释为使用马尔可夫链蒙特卡洛采样和后搜索算法作为大都市杂货店采样器的最大似然估计。实验是在两个弱监督的神经符号任务上进行的:(1)在新引入的HWF数据集上的手写公式识别; (2)在CLEVR数据集上回答的视觉问题。结果表明,我们的方法在性能,融合速度和数据效率方面大大优于RL方法。我们的代码和数据以\ url {https://liqing-ustc.github.io/ngs}发布。

The goal of neural-symbolic computation is to integrate the connectionist and symbolist paradigms. Prior methods learn the neural-symbolic models using reinforcement learning (RL) approaches, which ignore the error propagation in the symbolic reasoning module and thus converge slowly with sparse rewards. In this paper, we address these issues and close the loop of neural-symbolic learning by (1) introducing the \textbf{grammar} model as a \textit{symbolic prior} to bridge neural perception and symbolic reasoning, and (2) proposing a novel \textbf{back-search} algorithm which mimics the top-down human-like learning procedure to propagate the error through the symbolic reasoning module efficiently. We further interpret the proposed learning framework as maximum likelihood estimation using Markov chain Monte Carlo sampling and the back-search algorithm as a Metropolis-Hastings sampler. The experiments are conducted on two weakly-supervised neural-symbolic tasks: (1) handwritten formula recognition on the newly introduced HWF dataset; (2) visual question answering on the CLEVR dataset. The results show that our approach significantly outperforms the RL methods in terms of performance, converging speed, and data efficiency. Our code and data are released at \url{https://liqing-ustc.github.io/NGS}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源