论文标题
具有边界的GL(1 | 1)超对称Gaudin磁铁的量子古典对应关系
Quantum-classical correspondence for gl(1|1) supersymmetric Gaudin magnet with boundary
论文作者
论文摘要
我们扩展了具有边界的量子集成的高丁模型与经典的Calogero-Moser系统与经典lie lie代数$ b_n $,$ c_n $,$ d_n $相关的经典calogero-moser系统与SuperSymmmetric $ {\ rm gl}(M | N)$ Gaudin型号与$ M+N = 2 $。也就是说,我们表明,使用经典颗粒速度识别的所有此类磁体的量子量子的光谱可提供经典作用变量的零水平。
We extend duality between the quantum integrable Gaudin models with boundary and the classical Calogero-Moser systems associated with root systems of classical Lie algebras $B_N$, $C_N$, $D_N$ to the case of supersymmetric ${\rm gl}(m|n)$ Gaudin models with $m+n=2$. Namely, we show that the spectra of quantum Hamiltonians for all such magnets being identified with the classical particles velocities provide the zero level of the classical action variables.