论文标题

基于图像的模型预测控制通过动态模式分解

Image-Based Model Predictive Control via Dynamic Mode Decomposition

论文作者

Lu, Qiugang, Zavala, Victor M.

论文摘要

我们为具有较高状态空间维度的系统提供了数据驱动的模型预测控制(MPC)框架。这项工作是出于需要利用以图像形式出现的传感器数据(例如,由热摄像机报告的2D或3D空间场)。我们建议使用动态模式分解(DMD)直接从图像数据中构建低维模型,并使用此类模型获得可拖动的MPC控制器。我们通过使用2D热扩散系统证明了这种方法的可伸缩性(我们称为DMD-MPC)。在这里,我们假设热场的演变是由50x50像素图像捕获的,这导致2500维状态空间。我们表明,可以使用40维DMD模型可以准确预测此高维空间的动力学,并且我们可以通过使用嵌入低维DMD模型的MPC控制器来令人满意地操纵场。我们还表明,DMD-MPC控制器的表现明显胜过标准的MPC控制器,该控制器使用有限的空间位置(代理位置)中的数据来操纵高维热场。该比较说明了图像数据中嵌入的信息的价值。

We present a data-driven model predictive control (MPC) framework for systems with high state-space dimensionalities. This work is motivated by the need to exploit sensor data that appears in the form of images (e.g., 2D or 3D spatial fields reported by thermal cameras). We propose to use dynamic mode decomposition (DMD) to directly build a low-dimensional model from image data and we use such model to obtain a tractable MPC controller. We demonstrate the scalability of this approach (which we call DMD-MPC) by using a 2D thermal diffusion system. Here, we assume that the evolution of the thermal field is captured by 50x50 pixel images, which results in a 2500-dimensional state-space. We show that the dynamics of this high-dimensional space can be accurately predicted by using a 40-dimensional DMD model and we show that the field can be manipulated satisfactorily by using an MPC controller that embeds the low-dimensional DMD model. We also show that the DMD-MPC controller significantly outperforms a standard MPC controller that uses data from a finite set of spatial locations (proxy locations) to manipulate the high-dimensional thermal field. This comparison illustrates the value of information embedded in image data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源