论文标题

查询培训:学习一个更糟糕的模型,以推断出具有隐藏变量的无向图形模型中的更好的边缘

Query Training: Learning a Worse Model to Infer Better Marginals in Undirected Graphical Models with Hidden Variables

论文作者

Lázaro-Gredilla, Miguel, Lehrach, Wolfgang, Gothoskar, Nishad, Zhou, Guangyao, Dedieu, Antoine, George, Dileep

论文摘要

概率图形模型(PGMS)提供了可以以灵活的方式查询的知识的紧凑表示:在学习图形模型的参数后,可以在测试时间回答新的概率查询而无需重新训练。但是,当将无方向性的PGM与隐藏变量一起使用时,除了最简单的模型(a)学习错误(计算分区函数和集成隐藏变量)外,所有错误的两个错误源通常是复合的; (b)预测误差(精确推断也很棘手)。在这里,我们介绍了查询培训(QT),这是一种学习PGM的机制,该机制已针对将与其配对的近似推理算法进行了优化。由此产生的PGM是数据的更糟糕的模型(按可能性衡量),但是它是为给定推理算法产生更好的边缘的。与先前的作品不同,我们的方法保留了原始PGM的查询灵活性:在测试时,我们可以估算出任何部分证据的任何变量的边际。我们通过实验证明,QT可用于学习具有隐藏变量的具有挑战性的8个连接的网格马尔可夫随机字段,并且当在多个数据集中对三个无方向的模型进行测试时,它始终优于最先进的advil。

Probabilistic graphical models (PGMs) provide a compact representation of knowledge that can be queried in a flexible way: after learning the parameters of a graphical model once, new probabilistic queries can be answered at test time without retraining. However, when using undirected PGMS with hidden variables, two sources of error typically compound in all but the simplest models (a) learning error (both computing the partition function and integrating out the hidden variables is intractable); and (b) prediction error (exact inference is also intractable). Here we introduce query training (QT), a mechanism to learn a PGM that is optimized for the approximate inference algorithm that will be paired with it. The resulting PGM is a worse model of the data (as measured by the likelihood), but it is tuned to produce better marginals for a given inference algorithm. Unlike prior works, our approach preserves the querying flexibility of the original PGM: at test time, we can estimate the marginal of any variable given any partial evidence. We demonstrate experimentally that QT can be used to learn a challenging 8-connected grid Markov random field with hidden variables and that it consistently outperforms the state-of-the-art AdVIL when tested on three undirected models across multiple datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源