论文标题
限制性随机顺序吸附中的二聚体的干扰和渗透
Jamming and percolation of dimers in restricted-valence random sequential adsorption
论文作者
论文摘要
在正方形和三角形晶格上,研究了其纯净和无序版本的限制性随机顺序吸附〜(RSA)。对于最简单的情况〜(平方晶格上的纯度),我们证明没有渗透率的最大价$ v _ {\ rm max} = 2 $。在其他情况下,蒙特卡洛模拟用于研究渗透阈值,普遍性类别和障碍极限。我们的结果揭示了对所研究的大多数病例的连续过渡。渗透阈值是通过对七个属性的有限尺寸缩放分析来计算的。它的价值随平均价值而增加。缩放图和数据崩溃分析表明,即使在乱码的情况下,过渡也属于标准渗透普遍性类别
Restricted-valence random sequential adsorption~(RSA) is studied in its pure and disordered versions, on the square and triangular lattices. For the simplest case~(pure on the square lattice) we prove the absence of percolation for maximum valence $V_{\rm max}=2$. In other cases, Monte Carlo simulations are used to investigate the percolation threshold, universality class, and jamming limit. Our results reveal a continuous transition for the majority of the cases studied. The percolation threshold is computed through finite-size scaling analysis of seven properties; its value increases with the average valency. Scaling plots and data-collapse analyses show that the transition belongs to the standard percolation universality class even in disordered cases