论文标题

PAU调查:ly $α$强度映射预测

The PAU survey: Ly$α$ intensity mapping forecast

论文作者

Renard, Pablo, Gaztanaga, Enrique, Croft, Rupert, Cabayol, Laura, Carretero, Jorge, Eriksen, Martin, Fernandez, Enrique, García-Bellido, Juan, Miquel, Ramon, Padilla, Cristobal, Sanchez, Eusebio, Tallada-Crespí, Pau

论文摘要

在这项工作中,我们探索了强度映射的应用,以通过与Eboss和Desi的LY $α$ forest数据的PAUS图像的互相关来检测IgM的扩展LY $α$发射。已经考虑了七个窄带(FWHM = 13nm)PAUS滤波器,范围从455到515 nm,步骤为10 nm,这允许在$ 2.7 <z <3.3 $的范围内观察到ly $α$排放。 The cross-correlation is simulated first in an area of​​ 100 deg$^2$ (PAUS projected coverage), and second in two hypothetical scenarios: a deeper PAUS (complete up to $i_{\rm AB}<24$ instead of $i_{\rm AB}<23$, observation time x6), and an extended PAUS coverage of 225 deg$^2$ (observation time x2.25).对400 MPC/h的尺寸的流体动力模拟用于模拟扩展的LY $α$发射和吸收,而PAUS图像中的前景是使用LightCone模拟目录模拟的。利用对不相关的PAU噪声的乐观估计,据估计,Paus-Eboss和Paus-Desi的非流行检测的总概率为1.8 \%和4.5 \%,从1000个模拟交叉相关的运行中,具有不同的乐器噪声和Quasar位置和Quasar位置。假设的PAU场景将这种概率提高到15.3 \%(更深的PAU)和9.0 \%(扩展PAU)。通过直接从PAU图像测量的逼真的相关噪声,这些概率可以忽略不计。尽管有这些负面的结果,但一些证据表明该方法可能更适合广泛的调查。

In this work, we explore the application of intensity mapping to detect extended Ly$α$ emission from the IGM via cross-correlation of PAUS images with Ly$α$ forest data from eBOSS and DESI. Seven narrow-band (FWHM=13nm) PAUS filters have been considered, ranging from 455 to 515 nm in steps of 10 nm, which allows the observation of Ly$α$ emission in a range $2.7<z<3.3$. The cross-correlation is simulated first in an area of 100 deg$^2$ (PAUS projected coverage), and second in two hypothetical scenarios: a deeper PAUS (complete up to $i_{\rm AB}<24$ instead of $i_{\rm AB}<23$, observation time x6), and an extended PAUS coverage of 225 deg$^2$ (observation time x2.25). A hydrodynamic simulation of size 400 Mpc/h is used to simulate both extended Ly$α$ emission and absorption, while the foregrounds in PAUS images have been simulated using a lightcone mock catalogue. Using an optimistic estimation of uncorrelated PAUS noise, the total probability of a non-spurious detection is estimated to be 1.8\% and 4.5\% for PAUS-eBOSS and PAUS-DESI , from a run of 1000 simulated cross-correlations with different realisations of instrumental noise and quasar positions. The hypothetical PAUS scenarios increase this probability to 15.3\% (deeper PAUS) and 9.0\% (extended PAUS). With realistic correlated noise directly measured from PAUS images, these probabilities become negligible. Despite these negative results, some evidences suggest that this methodology may be more suitable to broad-band surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源