论文标题

HMIC:分层医学图像分类,一种深度学习方法

HMIC: Hierarchical Medical Image Classification, A Deep Learning Approach

论文作者

Kowsari, Kamran, Sali, Rasoul, Ehsan, Lubaina, Adorno, William, Ali, Asad, Moore, Sean, Amadi, Beatrice, Kelly, Paul, Syed, Sana, Brown, Donald

论文摘要

图像分类是医学大数据革命的核心。改进的信息处理方法用于诊断和分类数字医学图像,已证明通过深度学习方法成功。随着该领域的探索,传统监督分类器的性能存在局限性。本文概述了一种与当前的医学图像分类任务不同的方法,该任务将问题视为多类分类。我们使用分层医学图像分类(HMIC)方法进行了分层分类。 HMIC使用一组深度学习模型来在临床图片层次结构的每个级别上具有特殊的理解。为了测试我们的性能,我们使用了小肠图像的活检,这些小肠图像中包含三类在母级(腹腔疾病,环境肠病和组织学正常控制)。对于儿童水平,乳糜泻的严重程度分为4类(I,IIIA,IIIB和IIIC)。

Image classification is central to the big data revolution in medicine. Improved information processing methods for diagnosis and classification of digital medical images have shown to be successful via deep learning approaches. As this field is explored, there are limitations to the performance of traditional supervised classifiers. This paper outlines an approach that is different from the current medical image classification tasks that view the issue as multi-class classification. We performed a hierarchical classification using our Hierarchical Medical Image classification (HMIC) approach. HMIC uses stacks of deep learning models to give particular comprehension at each level of the clinical picture hierarchy. For testing our performance, we use biopsy of the small bowel images that contain three categories in the parent level (Celiac Disease, Environmental Enteropathy, and histologically normal controls). For the child level, Celiac Disease Severity is classified into 4 classes (I, IIIa, IIIb, and IIIC).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源