论文标题

对抗性的自我监督对比学习

Adversarial Self-Supervised Contrastive Learning

论文作者

Kim, Minseon, Tack, Jihoon, Hwang, Sung Ju

论文摘要

现有的对抗学习方法主要使用类标签来生成对对抗性样本,从而导致不正确的预测,然后将其用于增强模型的训练以改善鲁棒性。尽管最近的一些作品提出了使用未标记数据的半监督对抗学习方法,但它们仍然需要类标签。但是,我们真的真的需要班级标签,以便对深度神经网络的对抗性训练?在本文中,我们提出了针对未标记数据的新型对抗性攻击,这使该模型混淆了扰动数据样本的实例级别的身份。此外,我们提出了一个自制的对比学习框架,以对抗而没有标记的数据来训练强大的神经网络,该框架旨在最大程度地提高数据样本的随机增强与实例的对抗性扰动之间的相似性。我们在多个基准数据集上验证了我们的方法,可靠的对比度学习(ROCL),在该数据集上,它在最先进的监督对抗性学习方法上获得了可比的鲁棒精度,并显着改善了针对黑匣子和看不见的攻击类型的鲁棒性。此外,通过对受监督的对抗损失进行进一步的联合微调,ROCL仅使用自我监督学习就获得了更高的鲁棒精度。值得注意的是,ROCL还表现出令人印象深刻的转移学习结果。

Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions, which are then used to augment the training of the model for improved robustness. While some recent works propose semi-supervised adversarial learning methods that utilize unlabeled data, they still require class labels. However, do we really need class labels at all, for adversarially robust training of deep neural networks? In this paper, we propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples. Further, we present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data, which aims to maximize the similarity between a random augmentation of a data sample and its instance-wise adversarial perturbation. We validate our method, Robust Contrastive Learning (RoCL), on multiple benchmark datasets, on which it obtains comparable robust accuracy over state-of-the-art supervised adversarial learning methods, and significantly improved robustness against the black box and unseen types of attacks. Moreover, with further joint fine-tuning with supervised adversarial loss, RoCL obtains even higher robust accuracy over using self-supervised learning alone. Notably, RoCL also demonstrate impressive results in robust transfer learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源